Skip to main content

HCL Schema

Atlas schemas can be defined in SQL, external ORMs and programs, or by using the Atlas HCL language. The HCL-based language allows developers to describe database schemas in a declarative manner, and it supports all SQL features supported by Atlas. The main advantages of using HCL are that it enables developers to manage their database schemas like regular code, facilitates sharing and reusing files between projects, allows variable injection, and provides the ability to attach annotations to objects, such as PII or sensitive data.

Editor Support

The Atlas HCL language provides plugins for popular editors like VSCode and JetBrains to enhance your day-to-day editing, navigation, formatting, and testing experience.

VSCode extension

Schema

The schema object describes a database schema. A DATABASE in MySQL and SQLite, or a SCHEMA in PostgreSQL. An HCL file can contain 1 or more schema objects.

In MySQL and MariaDB, the schema resource can contain the charset and collate attributes. Read more about them in MySQL or MariaDB websites.

# Schema with attributes.
schema "market" {
charset = "utf8mb4"
collate = "utf8mb4_0900_ai_ci"
comment = "A schema comment"
}

# Schema without attributes.
schema "orders" {}

Table

A table describes a table in a SQL database. A table hold its columns, indexes, constraints, and additional attributes that are supported by the different drivers.

table "users" {
schema = schema.public
column "id" {
type = int
}
column "name" {
type = varchar(255)
}
column "manager_id" {
type = int
}
primary_key {
columns = [
column.id
]
}
index "idx_name" {
columns = [
column.name
]
unique = true
}
foreign_key "manager_fk" {
columns = [column.manager_id]
ref_columns = [column.id]
on_delete = CASCADE
on_update = NO_ACTION
}
}

Check

A check is a child resource of a table that describes a CHECK constraint.

table "products" {
column "price" {
type = float
}
check "positive price" {
expr = "price > 0"
}
}

Partitions

The partition option is a PostgreSQL-specific option that allows defining table partitioning. Table partitioning refers to splitting logical large tables into smaller physical ones.

table "logs" {
schema = schema.public
column "date" {
type = date
}
column "text" {
type = integer
}
partition {
type = RANGE
columns = [column.date]
}
}

table "metrics" {
schema = schema.public
column "x" {
type = integer
}
column "y" {
type = integer
}
partition {
type = RANGE
by {
column = column.x
}
by {
expr = "floor(y)"
}
}
}

Row Level Security

The row_security option is a PostgreSQL-specific option that allows enabling row-level security policies for a table.

table "users" {
schema = schema.public
column "id" {
type = int
}
row_security {
enabled = true // ENABLE ROW LEVEL SECURITY
enforced = true // FORCE ROW LEVEL SECURITY
}
}
Defining Policies

To define row-level security policies for a table, refer to the policy example.

Table Qualification

In some cases, an Atlas DDL document may contain multiple tables of the same name. This usually happens when the same table name appears in two different schemas. In these cases, the table names must be disambiguated by using resource qualifiers. The following document describes a database that contains two schemas named a and b, and both of them contain a table named users.

schema "a" {}
schema "b" {}

table "a" "users" {
schema = schema.a
// .. columns
}
table "b" "users" {
schema = schema.b
// .. columns
}

Storage Engine

The engine attribute allows for overriding the default storage engine of the table. Supported by MySQL, MariaDB and ClickHouse.

table "users" {
schema = schema.public
engine = MyISAM
}

table "posts" {
schema = schema.public
engine = InnoDB
}

table "orders" {
schema = schema.public
engine = "MyRocks"
}

System-Versioned Tables

The system_versioned attribute allows marking a table as a system-versioned table. Supported by MariaDB.

System-Versioned tables are currently available only to Atlas Pro users. To use this feature, run:

atlas login
table "f" {
schema = schema.public
column "id" {
type = int
}
// ...
system_versioned = true
}

Distribution

The distribution block is a Redshift-specific option that allows specifying the distribution method of the table.

table "users" {
schema = schema.public
column "id" {
type = int
}
distribution {
style = KEY // EVEN | ALL | AUTO
key = column.id // only for KEY style
}
}

Sorting

The sort block is a Redshift-specific option that allows specifying the sorting method of the table.

table "users" {
schema = schema.public
column "id" {
type = int
}
sort {
style = COMPOUND // INTERLEAVED | COMPOUND | AUTO
columns = [column.id]
}
}

Sorting Style AUTO

Redshift restricts user access to certain external tables which are used to inspect the sort style. Therefore, Atlas will ignore differences when changing the style to AUTO. You will need to manually adjust the sort style on your target Redshift database after modifying it in the Atlas schema.

To change the sort style to AUTO, run the following SQL command:

ALTER TABLE "my_table" ALTER SORTKEY AUTO;

View

A view is a virtual table in the database, defined by a statement that queries rows from one or more existing tables or views.

Views are currently available only to Atlas Pro users. To use this feature, run:

atlas login
view "clean_users" {
schema = schema.public
column "id" {
type = int
}
column "name" {
type = text
}
as = <<-SQL
SELECT u.id, u.name
FROM ${table.users.name} AS u
JOIN ${view.active_users.name} AS au USING (id)
SQL
depends_on = [table.users, view.t1]
comment = "A view to active users without sensitive data"
}

view "comedies" {
schema = schema.public
column "id" {
type = int
}
column "name" {
type = text
}
as = "SELECT id, name FROM films WHERE kind = 'Comedy'"
depends_on = [table.films]
check_option = CASCADED
security = INVOKER // DEFINER | INVOKER (MySQL/MariaDB only).
}

Atlas's testing framework allows you to write unit tests for your views. The following example demonstrates how to write tests for the clean_users view defined above. For more detail, read the schema testing docs or see the full example.

schema.test.hcl
test "schema" "view" {
# Seeding to test view.
exec {
sql = "INSERT INTO users (id, name) VALUES (1, 'Alice'), (2, 'Bob'), (3, 'Charlie');"
}
log {
message = "Seeded the database"
}
# Expected exec to pass.
exec {
sql = <<SQL
SELECT id, name
FROM clean_users;
SQL
}
log {
message = "Tested the view"
}
# Validates data.
exec {
sql = "SELECT id, name FROM clean_users;"
format = table
output = <<TAB
id | name
----+---------
1 | Alice
2 | Bob
3 | Charlie
TAB
}
log {
message = "Table is as expected"
}
}

Materialized View

A materialized view is a table-like structure that holds the results of a query. Unlike a regular view, the results of a materialized view are stored in the database and can be refreshed periodically to reflect changes in the underlying data.

Materialized views are currently available only to Atlas Pro users. To use this feature, run:

atlas login
materialized "mat_view" {
schema = schema.public
column "total" {
null = true
type = numeric
}
index "idx_expr" {
unique = true
on {
expr = "((total > (0)::numeric))"
}
}
index "idx_pred" {
unique = true
columns = [column.total]
where = "(total < (0)::numeric)"
}
as = <<-SQL
SELECT sum(total) AS total
FROM m1;
SQL
depends_on = [materialized.m1]
}

Column

A column is a child resource of a table.

column "name" {
type = text
null = false
}

column "age" {
type = integer
default = 42
}

column "active" {
type = tinyint(1)
default = true
}

Properties

NameKindTypeDescription
nullattributeboolDefines whether the column is nullable.
typeattribute*schemahcl.TypeDefines the type of data that can be stored in the column.
defaultattribute*schemahcl.LiteralValueDefines the default value of the column.

Generated Columns

Generated columns are columns whose their values are computed using other columns or by deterministic expressions.

table "users" {
schema = schema.test
column "a" {
type = int
}
column "b" {
type = int
# In MySQL, generated columns are VIRTUAL by default.
as = "a * 2"
}
column "c" {
type = int
as {
expr = "a * b"
type = STORED
}
}
}
info

Note, it is recommended to use the --dev-url option when generated columns are used.

Encodings

Encodings are used to define the compression algorithm for the column data. Supported by ClickHouse and Redshift.

table "users" {
schema = schema.public
column "name" {
type = text
encode = LZ4 // AZ64 | RAW | LZ4 | ZSTD
}
}

Column Types

The SQL dialects supported by Atlas (Postgres, MySQL, MariaDB, and SQLite) vary in the types they support. At this point, the Atlas DDL does not attempt to abstract away the differences between various databases. This means that the schema documents are tied to a specific database engine and version. This may change in a future version of Atlas as we plan to add "Virtual Types" support. This section lists the various types that are supported in each database.

For a full list of supported column types, click here.

Primary Key

A primary_key is a child resource of a table, and it defines the table's primary key.

Example

primary_key {
columns = [column.id]
}

Properties

NameKindTypeDescription
columnsattributereference (list)A list of references to columns that comprise the primary key.

Foreign Key

Foreign keys are child resources of a table, and it defines some columns in the table as references to columns in other tables.

Example

schema.hcl
table "users" {
schema = schema.public
column "id" {
type = integer
}
primary_key {
columns = [column.id]
}
}

table "orders" {
schema = schema.market
// ...
column "owner_id" {
type = integer
}
foreign_key "owner_id" {
columns = [column.owner_id]
ref_columns = [table.users.column.id]
on_update = NO_ACTION
on_delete = NO_ACTION
}
}

Referencing Qualified Tables

If a foreign key references a column in a qualified table, it is referenced using table.<qualifier>.<table_name>.column.<column_name>:

schema.hcl
table "public" "users" {
schema = schema.public
column "id" {
type = integer
}
primary_key {
columns = [column.id]
}
}

table "admin" "users" {
schema = schema.admin
// ...
column "external_id" {
type = integer
}
foreign_key "external_id" {
columns = [column.external_id]
ref_columns = [table.admin.users.column.id]
on_update = NO_ACTION
on_delete = NO_ACTION
}
}

Properties

NameKindTypeDescription
columnsattributereference (list)The columns that reference other columns.
ref_columnsattributereference (list)The referenced columns.
on_updateattributeschema.ReferenceOptionDefines what to do on update.
on_deleteattributeschema.ReferenceOptionDefines what to do on delete.

Index

Indexes are child resources of a table, and it defines an index on the table.

Example

# Columns only.
index "idx_name" {
unique = true
columns = [column.name]
}

# Columns and order.
index "idx_name" {
unique = true
on {
column = column.rank
}
on {
column = column.score
desc = true
}
}

# Custom index type.
index "idx_name" {
type = GIN
columns = [column.data]
}

# Control storage options.
index "idx_range" {
type = BRIN
columns = [column.range]
page_per_range = 128
}

# Include non-key columns.
index "idx_include" {
columns = [column.range]
include = [column.version]
}

# Define operator class.
index "idx_operator_class" {
type = GIN
on {
column = column.j
ops = jsonb_path_ops
}
}

# Full-text index with ngram parser.
index "index_parser" {
type = FULLTEXT
columns = [column.text]
parser = ngram
}

# Postgres-specific NULLS [NOT] DISTINCT option.
index "index_nulls_not_distinct" {
unique = true
columns = [column.text]
nulls_distinct = false
}

Properties

NameKindTypeDescription
uniqueattributebooleanDefines whether a uniqueness constraint is set on the index.
typeattributeIndexType (enum)Defines the index type. e.g. HASH, GIN, FULLTEXT.
columnsattributereference (list)The columns that comprise the index.
onresourceschema.IndexPart (list)The index parts that comprise the index.
optionsattributeschema.AttrAdditional driver specific attributes. e.g. page_per_range

Index Expressions

Index expressions allow setting indexes over functions or computed expressions. Supported by PostgreSQL, SQLite and MySQL8.

table "t" {
schema = schema.test
column "c1" {
type = int
}
column "c2" {
type = int
}
index "i" {
on {
expr = "c1 - c2"
}
on {
expr = "c2 - c1"
}
}
}
info

Note, it is recommended to use the --dev-url option when index expressions are used.

Partial Indexes

Partial indexes allow setting indexes over subset of the table. Supported by PostgreSQL and SQLite.

table "t" {
schema = schema.public
column "b" {
type = bool
}
column "c" {
type = int
}
index "i" {
columns = [column.c]
where = "b AND c > 0"
}
}
info

Note, it is recommended to use the --dev-url option when partial indexes are used.

Index Prefixes

Index prefixes allow setting an index on the first N characters of string columns. Supported by MySQL and MariaDB.

table "users" {
schema = schema.test
column "name" {
type = varchar(255)
}
index "user_name" {
on {
column = column.name
prefix = 128
}
}
}

Unique Constraints

The unique block allows defining a unique constraint supported by PostgreSQL:

# Columns only.
unique "name" {
columns = [column.name]
}

# Include non-key columns.
unique "name_include_version" {
columns = [column.name]
include = [column.version]
}

In order to add a unique constraint in non-blocking mode, the index supporting the constraint needs to be created concurrently first and then converted to a unique constraint. To achieve this, follow the steps below:

  1. Define a unique index block on the desired table.
  2. Ensure a Diff Policy is used to instruct Atlas to create the index concurrently.
  3. Apply the migration and ensure the index was created.
  4. Replace the index block with a unique block to create a new unique constraint using the existing index.

Exclude Constraints

The exclude block allows defining a exclusion constraint supported by PostgreSQL:

exclude "excl_speaker_during" {
type = GIST
on {
column = column.speaker
op = "="
}
on {
column = column.during
op = "&&"
}
}

# Include non-key columns.
exclude "excl_speaker_during" {
type = GIST
on {
column = column.speaker
op = "="
}
on {
column = column.during
op = "&&"
}
include = [column.another]
}

Trigger

Triggers are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The trigger block allows defining SQL triggers in HCL format.

function "audit_orders" {
schema = schema.public
lang = PLpgSQL
return = trigger
as = <<-SQL
BEGIN
INSERT INTO orders_audit(order_id, operation) VALUES (NEW.order_id, TG_OP);
RETURN NEW;
END;
SQL
}
trigger "trigger_orders_audit" {
on = table.orders
after {
insert = true
update_of = [table.orders.column.amount]
}
execute {
function = function.audit_orders
}
}

Computed Triggers

To configure the same trigger for multiple tables/views, users can utilize the for_each meta-argument. By setting it up, a trigger block will be computed for each item in the provided value. Note that for_each accepts either a map or a set of references.

schema.pg.hcl
trigger "audit_log_trigger" {
for_each = [table.users, table.orders, table.payments]
on = each.value
after {
insert = true
update = true
delete = true
}
execute {
function = function.audit_log_table
}
}

Event Trigger

Event Triggers are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The event_trigger block allows defining PostgreSQL event trigger functions that automatically execute in response to specific events within the database system, like table creation or schema modifications.

# Block table rewrites.
event_trigger "block_table_rewrite" {
on = table_rewrite
execute = function.no_rewrite_allowed
}

# Filter specific events.
event_trigger "record_table_creation" {
on = ddl_command_start
tags = ["CREATE TABLE"]
execute = function.record_table_creation
}

Function

Functions are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The function block allows defining functions in HCL format. The lang attribute specifies the language of the function. For example, PLpgSQL, SQL, CRL, etc.

function "positive" {
schema = schema.public
lang = SQL
arg "v" {
type = integer
}
return = boolean
as = "SELECT v > 0"
}

function "sql_body1" {
schema = schema.public
lang = SQL
arg "v" {
type = integer
}
return = integer
as = <<-SQL
BEGIN ATOMIC
SELECT v;
END
SQL
}

function "sql_body2" {
schema = schema.public
lang = SQL
arg {
type = integer
}
return = integer
as = "RETURN $1"
volatility = IMMUTABLE // STABLE | VOLATILE
leakproof = true // NOT LEAKPROOF | LEAKPROOF
strict = true // (CALLED | RETURNS NULL) ON NULL INPUT
security = INVOKER // DEFINER | INVOKER
}

Atlas's testing framework allows you to write unit tests for your functions. The following example demonstrates how to write tests for the positive function defined above. For more detail, read the schema testing docs or see the full example.

schema.test.hcl
test "schema" "simple_test" {
parallel = true
assert {
sql = "SELECT positive(1)"
}
log {
message = "First assertion passed"
}
assert {
sql = <<SQL
SELECT NOT positive(0);
SELECT NOT positive(-1);
SQL
}
}

Aggregate Functions

The aggregate block defines a function that computes a single result from a set of values. Supported by PostgreSQL.

aggregate "sum_of_squares" {
schema = schema.public
arg {
type = double_precision
}
state_type = double_precision
state_func = function.sum_squares_sfunc
}

function "sum_squares_sfunc" {
schema = schema.public
lang = PLpgSQL
arg "state" {
type = double_precision
}
arg "value" {
type = double_precision
}
return = double_precision
as = <<-SQL
BEGIN
RETURN state + value * value;
END;
SQL
}

Procedure

Procedures are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The procedure block allows defining SQL procedure in HCL format.

procedure "proc" {
schema = schema.public
lang = SQL
arg "a" {
type = integer
}
arg "b" {
type = text
}
arg "c" {
type = integer
default = 100
}
as = <<-SQL
INSERT INTO t1 VALUES(a, b);
INSERT INTO t2 VALUES(c, b);
SQL
}

Atlas's testing framework allows you to write unit tests for your procedures. The following example demonstrates how to write tests for a stored procedure, archive_old_sales, that moves old sales from the sales table to the archive_sales table according to a specified cutoff date. For more detail, read the schema testing docs or see the full example.

schema.test.hcl
test "schema" "procedure" {
# Seed data
exec {
sql = <<-SQL
INSERT INTO sales (id, sale_amount, sale_date) VALUES
(1, 150.00, '2024-07-18'),
(2, 200.00, '2024-06-20'),
(1, 350.00, '2024-07-10');
SQL
}
# Execute the procedure with a specific cutoff date
exec {
sql = "CALL archive_old_sales('2024-07-18')" # Archive sales before this date
}
# Verify data in archive_sales table
exec {
sql = "SELECT COUNT(*) FROM archive_sales WHERE sale_date < '2024-07-18'"
output = "2" # Expect 2 archived sales
}
# Verify data in sales table
exec {
sql = "SELECT COUNT(*) FROM sales"
output = "1" # Expect 1 sale remaining in the sales table after cutoff date
}
}

Domain

Domains are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The domain type is a user-defined data type that is based on an existing data type but with optional constraints and default values. Supported by PostgreSQL.

domain "us_postal_code" {
schema = schema.public
type = text
null = true
check "us_postal_code_check" {
expr = "((VALUE ~ '^\\d{5}$'::text) OR (VALUE ~ '^\\d{5}-\\d{4}$'::text))"
}
}

domain "username" {
schema = schema.public
type = text
null = false
default = "anonymous"
check "username_length" {
expr = "(length(VALUE) > 3)"
}
}

table "users" {
schema = schema.public
column "name" {
type = domain.username
}
column "zip" {
type = domain.us_postal_code
}
}

schema "public" {
comment = "standard public schema"
}

Atlas's testing framework allows you to write unit tests for your domains. The following example demonstrates how to write tests for the us_postal_code domain defined above. For more detail, read the schema testing docs or see the full example.

schema.test.hcl
test "schema" "postal" {
parallel = true
exec {
sql = "select '12345'::us_postal_code"
}
catch {
sql = "select 'hello'::us_postal_code"
}
}

Composite Type

Composite types are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The composite type is a user-defined data type that represents the structure of a row or record. Supported by PostgreSQL.

composite "address" {
schema = schema.public
field "street" {
type = text
}
field "city" {
type = text
}
}

table "users" {
schema = schema.public
column "address" {
type = composite.address
}
}

schema "public" {
comment = "standard public schema"
}

Policies

Policies are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The policy block allows defining row-level security policies. Supported by PostgreSQL.

schema.pg.hcl
policy "sales_rep_access" {
on = table.orders
for = SELECT
to = [PUBLIC]
using = "(sales_rep_id = (CURRENT_USER)::integer)"
}

policy "restrict_sales_rep_updates" {
on = table.orders
as = RESTRICTIVE
for = UPDATE
to = ["custom_role"]
check = "(sales_rep_id = (CURRENT_USER)::integer)"
comment = "This is a restrictive policy"
}
Enabling Row-Level Security

To enable and force row-level security on a table, refer to the table row-level security example.

Computed Policies

To configure the same policy for multiple tables, users can utilize the for_each meta-argument. By setting it up, a policy block will be computed for each item in the provided value. Note that for_each accepts either a map or a set of references.

schema.pg.hcl
policy "tenant_access_policy" {
for_each = [table.users, table.orders, table.payments]
on = each.value
as = RESTRICTIVE
using = "tenant_isolation_policy()"
}

Sequence

Sequences are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The sequence block allows defining sequence number generator. Supported by PostgreSQL and SQL Server.

Note, a sequence block is printed by Atlas on inspection, or it may be manually defined in the schema only if it represents a PostgreSQL sequence that is not implicitly created by the database for identity or serial columns.

# Simple sequence with default values.
sequence "s1" {
schema = schema.public
}

# Sequence with custom configuration.
sequence "s2" {
schema = schema.public
type = smallint
start = 100
increment = 2
min_value = 100
max_value = 1000
}

# Sequence that is owned by a column.
sequence "s3" {
schema = schema.public
owner = table.t2.column.id
comment = "Sequence with column owner"
}

# The sequences created by this table are not printed on inspection.
table "users" {
schema = schema.public
column "id" {
type = int
identity {
generated = ALWAYS
start = 10000
}
}
column "serial" {
type = serial
}
primary_key {
columns = [column.id]
}
}

table "t2" {
schema = schema.public
column "id" {
type = int
}
}

schema "public" {
comment = "standard public schema"
}

Enum

The enum type allows storing a set of enumerated values. Supported by PostgreSQL.

enum "status" {
schema = schema.test
values = ["on", "off"]
}

table "t1" {
schema = schema.test
column "c1" {
type = enum.status
}
}

table "t2" {
schema = schema.test
column "c1" {
type = enum.status
}
}

Extension

Extensions are currently available only to Atlas Pro users. To use this feature, run:

atlas login

The extension block allows the definition of PostgreSQL extensions to be loaded into the database. The following arguments are supported:

  • schema (Optional) - The schema in which to install the extension's objects, given that the extension allows its contents to be relocated.
  • version (Optional) - The version of the extension to install. Defaults to the version specified in the extension's control file.
  • comment (Read-only) - The description of the extension. This field is populated in atlas inspect output.
extension "adminpack" {
version = "2.1"
comment = "administrative functions for PostgreSQL"
}
extension "postgis" {
schema = schema.public
version = "3.4.1"
comment = "PostGIS geometry and geography spatial types and functions"
}
extension "pgcrypto" {
schema = schema.public
version = "1.3"
comment = "cryptographic functions"
}
schema "public" {
comment = "standard public schema"
}
Extensions work in database-scope only

Although the schema argument is supported, it only indicates where the extension's objects will be installed. However, the extension itself is installed at the database level and cannot be loaded multiple times into different schemas.

Therefore, to avoid conflicts with other schemas, when working with extensions, the scope of the migration should be set to the database, where objects are qualified with the schema name. To learn more about the difference between database and schema scopes, visit this doc.

Comment

The comment attribute is an attribute of schema, table, column, and index.

schema "public" {
comment = "A schema comment"
}

table "users" {
schema = schema.public
column "name" {
type = text
comment = "A column comment"
}
index "name_idx" {
columns = [column.name]
}
comment = "A table comment"
}

Charset and Collation

The charset and collate are attributes of schema, table and column and supported by MySQL, MariaDB and PostgreSQL. Read more about them in MySQL, MariaDB and PostgreSQL websites.

schema "public" {
charset = "utf8mb4"
collate = "utf8mb4_0900_ai_ci"
}

table "products" {
column "name" {
type = text
collate = "binary"
}
collate = "utf8_general_ci"
}

Auto Increment

AUTO_INCREMENT and IDENTITY columns are attributes of the column and table resource, and can be used to generate a unique identity for new rows.

In MySQL/MariaDB the auto_increment attribute can be set on columns and tables.

table "users" {
schema = schema.public
column "id" {
null = false
type = bigint
auto_increment = true
}
primary_key {
columns = [column.id]
}
}

The auto_increment column can be set on the table to configure a start value other than 1.

table "users" {
schema = schema.public
column "id" {
null = false
type = bigint
auto_increment = true
}
primary_key {
columns = [column.id]
}
auto_increment = 100
}