HCL Column Types
The following guide describes the column types supported by Atlas HCL, and how to use them.
MySQL
Bit
The bit
type allows creating BIT columns.
An optional size attribute allows controlling the number of bits stored in a column, ranging from 1 to 64.
table "t" {
schema = schema.test
column "c1" {
type = bit
}
column "c2" {
type = bit(4)
}
}
Binary
The varbinary
and binary
types allow storing binary byte strings.
table "t" {
schema = schema.test
column "c1" {
// Equals to binary(1).
type = binary
}
column "c2" {
type = binary(10)
}
column "c3" {
type = varbinary(255)
}
}
Blob
The tinyblob
, mediumblob
, blob
and longblob
types allow storing binary large objects.
table "t" {
schema = schema.test
column "c1" {
type = tinyblob
}
column "c2" {
type = mediumblob
}
column "c3" {
type = blob
}
column "c4" {
type = longblob
}
}
Boolean
The bool
and boolean
types are mapped to tinyint(1)
in MySQL. Still, Atlas allows maintaining columns of type bool
in the schema for simplicity reasons.
table "t" {
schema = schema.test
column "c1" {
type = bool
}
column "c2" {
type = boolean
}
}
Learn more about the motivation for these types in the MySQL website.
Date and Time
Atlas supports the standard MySQL types for storing date and time values: time
, timestamp
, date
, datetime
,
and year
.
table "t" {
schema = schema.test
column "c1" {
type = time
}
column "c2" {
type = timestamp
}
column "c3" {
type = date
}
column "c4" {
type = datetime
}
column "c5" {
type = year
}
column "c6" {
type = time(1)
}
column "c7" {
type = timestamp(2)
}
column "c8" {
type = datetime(4)
}
}
Fixed Point (Decimal)
The decimal
and numeric
types are supported for storing exact numeric values. Note that in MySQL the two types
are identical.
table "t" {
schema = schema.test
column "c1" {
// Equals to decimal(10) as the
// default precision is 10.
type = decimal
}
column "c2" {
// Equals to decimal(5,0).
type = decimal(5)
}
column "c3" {
type = decimal(5,2)
}
column "c4" {
type = numeric
unsigned = true
}
}
Floating Point (Float)
The float
and double
types are supported for storing approximate numeric values.
table "t" {
schema = schema.test
column "c1" {
type = float
}
column "c2" {
type = double
}
column "c3" {
type = float
unsigned = true
}
column "c4" {
type = double
unsigned = true
}
}
Enum
The enum
type allows storing a set of enumerated values.
table "t" {
schema = schema.test
column "c1" {
type = enum("a", "b")
}
column "c2" {
type = enum(
"c",
"d",
)
}
}
Integer
The tinyint
, smallint
, int
, mediumint
, bigint
integer types are support by Atlas.
table "t" {
schema = schema.test
column "c1" {
type = int
}
column "c2" {
type = tinyint
}
column "c3" {
type = smallint
}
column "c4" {
type = mediumint
}
column "c5" {
type = bigint
}
}
Integer Attributes
The auto_increment
, and unsigned
attributes
are also supported by integer types.
table "t" {
schema = schema.test
column "c1" {
type = tinyint
unsigned = true
}
column "c2" {
type = smallint
auto_increment = true
}
primary_key {
columns = [column.c2]
}
}
JSON
The json
type allows storing JSON objects.
table "t" {
schema = schema.test
column "c1" {
type = json
}
}
Set
The set
type allows storing a set of values.
table "t" {
schema = schema.test
column "c1" {
type = set("a", "b")
}
column "c2" {
type = set(
"c",
"d",
)
}
}
String
Atlas supports the standard MySQL types for storing string values. varchar
, char
, tinytext
, mediumtext
, text
and longtext
.
table "t" {
schema = schema.test
column "c1" {
type = varchar(255)
}
column "c2" {
type = char(1)
}
column "c3" {
type = tinytext
}
column "c4" {
type = mediumtext
}
column "c5" {
type = text
}
column "c6" {
type = longtext
}
}
Spatial
The geometry
, point
, multipoint
, linestring
and the rest of the
MySQL spatial types are supported by Atlas.
table "t" {
schema = schema.test
column "c1" {
type = geometry
}
column "c2" {
type = point
}
column "c3" {
type = multipoint
}
column "c4" {
type = linestring
}
}
PostgreSQL
Array
Atlas supports defining PostgreSQL array types using the sql
function.
table "t" {
schema = schema.test
column "c1" {
type = sql("int[]")
}
column "c2" {
type = sql("text[]")
}
column "c3" {
type = sql("int ARRAY")
}
column "c4" {
type = sql("varchar(255)[]")
}
column "c5" {
// The current PostgreSQL implementation
// ignores any supplied array size limits.
type = sql("point[4][4]")
}
}
Bit
The bit
and bit varying
types allow creating
bit string columns.
table "t" {
schema = schema.test
column "c1" {
// Equals to bit(1).
type = bit
}
column "c2" {
type = bit(2)
}
column "c3" {
// Unlimited length.
type = bit_varying
}
column "c4" {
type = bit_varying(1)
}
}
Boolean
The boolean
type allows creating standard SQL boolean columns.
table "t" {
schema = schema.test
column "c1" {
type = boolean
}
column "c2" {
type = boolean
default = true
}
}
Binary
The bytea
type allows creating binary string columns.
table "t" {
schema = schema.test
column "c1" {
type = bytea
}
}
Date, Time and Interval
Atlas supports the standard PostgreSQL types for creating date, time and interval columns.
table "t" {
schema = schema.test
column "c1" {
type = date
}
column "c2" {
// Equals to "time without time zone".
type = time
}
column "c3" {
// Equals to "time with time zone".
type = timetz
}
column "c4" {
// Equals "timestamp without time zone".
type = timestamp
}
column "c5" {
// Equals "timestamp with time zone".
type = timestamptz
}
column "c6" {
type = timestamp(4)
}
column "c7" {
type = interval
}
}
Domain
The domain
type is a user-defined data type that is based on an existing data type but with optional constraints
and default values. Learn more about it in the PostgreSQL website.
domain "us_postal_code" {
schema = schema.public
type = text
null = true
check "us_postal_code_check" {
expr = "((VALUE ~ '^\\d{5}$'::text) OR (VALUE ~ '^\\d{5}-\\d{4}$'::text))"
}
}
domain "username" {
schema = schema.public
type = text
null = false
default = "anonymous"
check "username_length" {
expr = "(length(VALUE) > 3)"
}
}
table "users" {
schema = schema.public
column "name" {
type = domain.username
}
column "zip" {
type = domain.us_postal_code
}
}
Enum
The enum
type allows storing a set of enumerated values. Learn more about it in the PostgreSQL website.
enum "status" {
schema = schema.test
values = ["on", "off"]
}
table "t1" {
schema = schema.test
column "c1" {
type = enum.status
}
}
table "t2" {
schema = schema.test
column "c1" {
type = enum.status
}
}
Fixed Point (Decimal)
The decimal
and numeric
types are supported for storing exact numeric values. Note that in PostgreSQL the two types
are identical.
table "t" {
schema = schema.test
column "c1" {
// Equals to decimal.
type = numeric
}
column "c2" {
// Equals to decimal(5).
type = numeric(5)
}
column "c3" {
// Equals to decimal(5,2).
type = numeric(5,2)
}
}
Floating Point (Float)
The real
and double_precision
types are supported for storing
approximate numeric values.
table "t" {
schema = schema.test
column "c1" {
type = real
}
column "c2" {
type = double_precision
}
column "c3" {
// Equals to real when precision is between 1 to 24.
type = float(10)
}
column "c2" {
// Equals to double_precision when precision is between 1 to 24.
type = float(30)
}
}
Geometric
Atlas supports the standard PostgreSQL types for creating geometric columns.
table "t" {
schema = schema.test
column "c1" {
type = circle
}
column "c2" {
type = line
}
column "c3" {
type = lseg
}
column "c4" {
type = box
}
column "c5" {
type = path
}
column "c6" {
type = polygon
}
column "c7" {
type = point
}
}
Integer
The smallint
, integer
/ int
, bigint
types allow creating integer types.
table "t" {
schema = schema.test
column "c1" {
type = smallint
}
column "c2" {
type = integer
}
column "c3" {
type = int
}
column "c4" {
type = bigint
default = 1
}
}
JSON
The json
and jsonb
types allow creating columns for storing JSON objects.
table "t" {
schema = schema.test
column "c1" {
type = json
}
column "c2" {
type = jsonb
}
}
Money
The money
data type allows creating columns for storing currency amount with a fixed fractional precision.
table "t" {
schema = schema.test
column "c1" {
type = money
}
}
Network Address
The inet
, cidr
, macaddr
and macaddr8
types allow creating network address columns.
table "t" {
schema = schema.test
column "c1" {
type = inet
}
column "c2" {
type = cidr
}
column "c3" {
type = macaddr
}
column "c4" {
type = macaddr8
}
}
Range
PostgreSQL supports the creation of range types for storing range of values of some element type. Learn more about them in the PostgreSQL website.
table "t" {
schema = schema.test
column "r1" {
type = int4range
}
column "r2" {
type = int8range
}
column "r3" {
type = numrange
}
column "r4" {
type = tsrange
}
column "r5" {
type = tstzrange
}
column "r6" {
type = daterange
}
column "r7" {
type = int4multirange
}
column "r8" {
type = int8multirange
}
column "r9" {
type = nummultirange
}
column "r10" {
type = tsmultirange
}
column "r11" {
type = tstzmultirange
}
column "r12" {
type = datemultirange
}
}
Serial
PostgreSQL supports creating columns of types smallserial
, serial
, and bigserial
. Note that these types are not
actual types, but more like "macros" for creating non-nullable integer columns with sequences attached.
table "t" {
schema = schema.test
column "c1" {
type = smallserial
}
column "c2" {
type = serial
}
column "c3" {
type = bigserial
}
}
String
The varchar
, char
, character_varying
, character
and text
types allow creating string columns.
table "t" {
schema = schema.test
column "c1" {
// Unlimited length.
type = varchar
}
column "c2" {
// Alias to character_varying(255).
type = varchar(255)
}
column "c3" {
// Equals to char(1).
type = char
}
column "c4" {
// Alias to character(5).
type = char(5)
}
column "c5" {
type = text
}
}
Text Search
The tsvector
and tsquery
data types are designed to store and query full text search. Learn more about them in the
PostgreSQL website.
table "t" {
schema = schema.test
column "tsv" {
type = tsvector
}
column "tsq" {
type = tsquery
}
}
UUID
The uuid
data type allows creating columns for storing Universally Unique Identifiers (UUID).
table "t" {
schema = schema.test
column "c1" {
type = uuid
}
column "c2" {
type = uuid
default = sql("gen_random_uuid()")
}
}
XML
The xml
data type allows creating columns for storing XML data.
table "t" {
schema = schema.test
column "c1" {
type = xml
}
}
SQLite
Values in SQLite are stored in one of the four native types: BLOB
, INTEGER
, NULL
, TEXT
and REAL
. Still, Atlas
supports variety of data types that are commonly used by ORMs. These types are mapped to column affinities based on
the rules described in SQLite website.
Blob
The blob
data type allows creating columns with BLOB
type affinity.
table "t" {
schema = schema.main
column "c" {
type = blob
}
}
Integer
The int
and integer
data types allow creating columns with INTEGER
type affinity.
table "t" {
schema = schema.main
column "c" {
type = int
}
}
Numeric
The numeric
and decimal
data types allow creating columns with NUMERIC
type affinity.
table "t" {
schema = schema.main
column "c" {
type = decimal
}
}
Text
The text
, varchar
, clob
, character
and varying_character
data types allow creating columns with text
type
affinity. i.e. stored as text strings.
table "t" {
schema = schema.main
column "c" {
type = text
}
}
Real
The real
, double
, double_precision
, and float
data types allow creating columns with real
type
affinity.
table "t" {
schema = schema.main
column "c" {
type = real
}
}
Additional Types
As mentioned above, Atlas supports variety of data types that are commonly used by ORMs. e.g. Ent.
table "t" {
schema = schema.main
column "c1" {
type = bool
}
column "c2" {
type = date
}
column "c3" {
type = datetime
}
column "c4" {
type = uuid
}
column "c5" {
type = json
}
}
SQL Server
Bit
The bit
type allows creating BIT columns.
table "t" {
schema = schema.dbo
column "c1" {
type = bit
}
}
Binary strings
The varbinary
and binary
types allow storing binary byte strings.
table "t" {
schema = schema.dbo
column "c1" {
// Equals to binary(1).
type = binary
}
column "c2" {
type = binary(10)
}
column "c3" {
type = varbinary(255)
}
column "c4" {
// Max length: 8,000 bytes.
type = varbinary(MAX)
}
}
Date and Time
Atlas supports the standard SQL Server types for storing date and time values: date
, datetime
, datetime2
, datetimeoffset
, smalldatetime
and time
.
The document on Microsoft website has more information on date and time types.
table "t" {
schema = schema.dbo
column "c1" {
type = date
}
column "c2" {
type = datetime
}
column "c3" {
type = datetime2
}
column "c4" {
type = datetimeoffset
}
column "c5" {
type = smalldatetime
}
column "c6" {
// Equals to time(7).
type = time
}
column "c7" {
type = time(1)
}
column "c8" {
type = time(2)
}
column "c9" {
type = time(3)
}
column "c10" {
type = time(4)
}
column "c11" {
type = time(5)
}
column "c12" {
type = time(6)
}
}
Integer
The int
, bigint
, smallint
, and tinyint
integer types are support by Atlas.
See document on Microsoft website for more information on integer types.
table "t" {
schema = schema.dbo
column "c1" {
type = int
}
column "c2" {
type = tinyint
}
column "c3" {
type = smallint
}
column "c4" {
type = bigint
}
}
Integer Blocks
The identity
block can be used to create an identity column.
table "t" {
schema = schema.dbo
column "c1" {
type = tinyint
}
column "c2" {
type = bigint
identity {
seed = 701
increment = 1000
}
}
primary_key {
columns = [column.c2]
}
}
Fixed Point (Decimal)
The decimal
and numeric
types are supported for storing exact numeric values. Note that in SQL Server the two types are identical.
table "t" {
schema = schema.dbo
column "c1" {
// Equals to decimal(18, 0) as the
// default precision is 18.
type = decimal
}
column "c2" {
// Equals to decimal(5,0).
type = decimal(5)
}
column "c3" {
type = decimal(5,2)
}
column "c4" {
type = numeric
}
}
Floating Point (Float)
The float
and real
types are supported for storing approximate numeric values.
The document on Microsoft website has more information on float types.
table "t" {
schema = schema.dbo
column "c1" {
// Equals to float(53).
type = float
}
column "c2" {
// float(n) is between 1 and 53.
type = float(12)
}
column "c3" {
// The ISO synonym for real is `float(24)`.
type = real
}
}
Money
The money
and smallmoney
data types allows creating columns for storing currency amount with a fixed fractional precision.
table "t" {
schema = schema.dbo
column "c1" {
type = money
}
column "c2" {
type = smallmoney
}
}
Character strings
The char
, and varchar
types allow creating string columns. The document on Microsoft website has more information on string types.
table "t" {
schema = schema.dbo
column "c1" {
// Equals to varchar(1).
type = varchar
}
column "c2" {
type = varchar(255)
}
column "c3" {
type = varchar(MAX)
}
column "c4" {
// Equals to char(1).
type = char
}
column "c5" {
type = char(5)
}
}
Unicode character strings
The nchar
, and nvarchar
types allow creating string columns. The document on Microsoft website has more information on unicode string types.
table "t" {
schema = schema.dbo
column "c1" {
// Equals to nvarchar(1).
type = nvarchar
}
column "c2" {
type = nvarchar(255)
}
column "c3" {
type = nvarchar(MAX)
}
column "c4" {
// Equals to nchar(1).
type = nchar
}
column "c5" {
type = nchar(5)
}
}
ntext
, text
and image
Atlas supports some deprecated types for backward compatibility. The document on Microsoft website has more information on ntext, text and image types.
table "t" {
schema = schema.dbo
column "c1" {
type = ntext
}
column "c2" {
type = text
}
column "c3" {
type = image
}
}
User-defined types
There are two types of user-defined types are supported by Atlas: Alias Types and Table Types.
The CLR user-defined types are not supported by Atlas.
Alias Types
The type_alias
type allows creating columns with user-defined types.
type_alias "ssn" {
schema = schema.dbo
type = varchar(11)
null = false
}
type_alias "age" {
schema = schema.dbo
type = smallint
null = false
}
table "t" {
schema = schema.dbo
column "ssn" {
type = type_alias.ssn
}
column "age" {
type = type_alias.age
}
}
Table Types
The type_table
type allows the creation of columns with user-defined table types. The User-Defined table type only allows to use of functions/procedures arguments and not on table columns.
type_table "address" {
schema = schema.dbo
column "ssn" {
type = type_alias.ssn
}
column "street" {
type = varchar(255)
}
column "city" {
type = varchar(255)
}
column "state" {
type = varchar(2)
}
column "zip" {
type = type_alias.zip
}
index {
unique = true
columns = [column.ssn]
}
check "zip_check" {
expr = "len(zip) = 5"
}
}
function "fn1" {
schema = schema.dbo
lang = SQL
arg "@a1" {
type = type_table.address
readonly = true // The table type is readonly argument.
}
arg "@zip" {
type = type_alias.zip
}
return = int
as = <<-SQL
BEGIN
RETURN (SELECT COUNT(1) FROM @a1 WHERE zip = @zip);
END
SQL
}
type_alias "ssn" {
schema = schema.foo
type = varchar(11)
null = false
}
type_alias "zip" {
schema = schema.foo
type = varchar(5)
null = false
}
SQL Server doesn't support creating a named unique constraint on a user-defined table type. Atlas was unable to handle duplicate unique constraints (the unique constraints on the same columns) on table types. The below example will cause schema diff for every time it applies schema.
CREATE TYPE [typ1] AS TABLE (
[c1] int NOT NULL UNIQUE ([c1] DESC),
UNIQUE ([c1] ASC)
);
ClickHouse
Array
Atlas supports defining ClickHouse array types using the sql
function.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
type = sql("Array(Int32)")
}
column "c2" {
type = sql("Array(String)")
}
column "c3" {
type = sql("Array(Array(Int32))")
}
}
Boolean
The Bool
type allows creating standard SQL boolean columns.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
type = Bool
}
column "c2" {
type = Bool
default = true
}
}
Date and Time
Atlas supports the standard ClickHouse types for creating date and time columns: Date
, DateTime
, DateTime32
DateTime64
.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Date
}
column "c2" {
null = false
type = Date32
}
column "c3" {
null = false
type = DateTime
}
column "c4" {
null = false
type = DateTime("America/New_York")
}
column "c5" {
null = false
type = DateTime
}
column "c6" {
null = false
type = DateTime32("America/New_York")
}
column "c7" {
null = false
type = DateTime64(3)
}
column "c8" {
null = false
type = DateTime64(3, "America/New_York")
}
}
Fixed Point (Decimal)
The Decimal
type allows creating columns for storing exact numeric values.
The precision and scale are specified as below.
Decimal
Precision: 9, Scale: 0Decimal32(Scale)
Precision: 9, Scale: ScaleDecimal64(Scale)
Precision: 18, Scale: ScaleDecimal128(Scale)
Precision: 38, Scale: ScaleDecimal256(Scale)
Precision: 76, Scale: ScaleDecimal(Precision, Scale)
Precision: Precision, Scale: Scale
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Decimal
}
column "c2" {
null = false
type = Decimal32(2)
}
column "c3" {
null = false
type = Decimal64(2)
}
column "c4" {
null = false
type = Decimal128(2)
}
column "c5" {
null = false
type = Decimal256(2)
}
column "c6" {
null = false
type = Decimal(11, 2)
}
}
Enum
The Enum
type allows storing a set of enumerated values and supports defining ClickHouse enum types using the sql
function.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Enum("a", "b")
}
column "c2" {
null = false
type = Enum8("a", "b")
}
column "c3" {
null = false
type = Enum16("a", "b")
}
}
Fixed String
The FixedString
type allows creating columns for storing fixed-length string values.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = FixedString(10)
}
}
Floating Point (Float)
The Float32
and Float64
types are supported for storing approximate numeric values.
The aliases for these types are Float
and Double
.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Float
}
column "c2" {
null = false
type = Double
}
}
Integer
The Int8
, Int16
, Int32
, Int64
, Int128
, Int256
types allow creating integer types.
The aliases for these types are Tinyint
, Smallint
, Int
, Bigint
.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Tinyint
}
column "c2" {
null = false
type = Smallint
}
column "c3" {
null = false
type = Int
}
column "c4" {
null = false
type = Bigint
}
column "c5" {
null = false
type = Int128
}
column "c6" {
null = false
type = Int256
}
}
Integer Attributes
The Unsigned
attribute is also supported by integer types.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Int
unsigned = true
}
}
IPv4 and IPv6
The IPv4
and IPv6
types allow creating columns for storing IPv4 and IPv6 addresses.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = IPv4
}
column "c2" {
null = false
type = IPv6
}
}
Spatial
Atlas supports the standard ClickHouse types for creating spatial columns.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Point
}
column "c2" {
null = false
type = Polygon
}
column "c3" {
null = false
type = MultiPolygon
}
}
Ring
The Ring
type allows creating columns for storing ring values.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Ring
}
}
String
The String
type allows creating columns for storing string values.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = String
}
}
UUID
The UUID
type allows creating columns for storing Universally Unique Identifiers (UUID).
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = UUID
}
}
Tuple
Atlas supports defining ClickHouse tuple types using the sql
function.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("Tuple(Int32, String)")
}
}
LowCardinality
Atlas supports defining ClickHouse low cardinality types using the sql
function.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("LowCardinality(String)")
}
}
Nullable
Atlas supports defining ClickHouse nullable types using the sql
function.
Null
attribute is needed to be set to true
for nullable types.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = true
type = sql("Nullable(String)")
}
}
JSON
The JSON
type allows creating columns for storing JSON objects.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
type = JSON
}
}
AggregateFunction
Atlas supports defining ClickHouse aggregate data types by using the sql
function.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("AggregateFunction(uniq, UInt64)")
}
column "c2" {
null = false
type = sql("SimpleAggregateFunction(sum, Int32)")
}
}
The AggregateFunction
and SimpleAggregateFunction
are complex data types. Therefore, we recommend using a Dev Database to normalize these types.
Nested
Atlas supports defining ClickHouse nested data types by using the sql
function.
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("Nested(a Int32, b String)")
}
}
The Nested
is a complex data type. Therefore, we recommend using a Dev Database to normalize these types.
Redshift
Boolean
The boolean
and bool
types allow creating standard SQL boolean columns.
table "t" {
schema = schema.test
column "c1" {
type = boolean
}
column "c2" {
# Alias to boolean.
type = bool
}
}
Binary
The binary_varying
, varbinary
and varbyte
types allow creating binary string columns.
table "t" {
schema = schema.test
column "c1" {
type = binary_varying(255)
}
column "c2" {
# Alias to binary_varying
type = varbinary(255)
}
column "c3" {
# Alias to binary_varying
type = varbyte(255)
}
}
Date, Time and Interval
Atlas supports the standard Redshift types for creating date, time and interval columns.
table "t" {
schema = schema.test
column "c1" {
type = date
}
column "c2" {
# Equals to "time without time zone".
type = time
}
column "c3" {
# Equals to "time with time zone".
type = timetz
}
column "c4" {
# Equals "timestamp without time zone".
type = timestamp
}
column "c5" {
# Equals "timestamp with time zone".
type = timestamptz
}
column "c6" {
type = sql("interval year to month")
}
}
Fixed Point (Decimal)
The decimal
and numeric
types are supported for storing exact numeric values. Note that in Redshift the two types are identical.
table "t" {
schema = schema.test
column "c1" {
# Equals to numeric.
type = decimal
}
column "c2" {
# Equals to numeric(5).
type = decimal(5)
}
column "c3" {
# Equals to numeric(5,2).
type = decimal(5,2)
}
}
Floating Point (Float)
The real
and double_precision
types are supported for storing approximate numeric values.
table "t" {
schema = schema.test
column "c1" {
type = real
}
column "c2" {
type = double_precision
}
column "c3" {
type = float(10)
}
column "c4" {
type = float(30)
}
column "c5" {
# Alias to real.
type = float4
}
column "c6" {
# Alias to double_precision.
type = float8
}
}
Integer
The smallint
, integer
/ int
, bigint
types allow creating integer types.
table "t" {
schema = schema.test
column "c1" {
type = smallint
}
column "c2" {
type = integer
}
column "c3" {
type = int
}
column "c4" {
type = bigint
}
column "c5" {
# Alias to smallint.
type = int2
}
column "c6" {
# Alias to integer.
type = int4
}
column "c7" {
# Alias to bigint.
type = int8
}
}
String
The varchar
, nvarchar
, char
, nchar
, bpchar
, character_varying
, character
and text
types allow creating string columns.
table "t" {
schema = schema.test
column "c1" {
# Equals character_varying(256).
type = varchar
}
column "c2" {
# Alias to character_varying(255).
type = varchar(255)
}
column "c3" {
# Equals to character_varying(255).
type = nvarchar(255)
}
column "c4" {
# Equals to char(1).
type = char
}
column "c5" {
# Equals to char(5).
type = nchar(5)
}
column "c6" {
# Alias to character(5).
type = char(5)
}
column "c7" {
# Alias to character(5).
type = bpchar(5)
}
column "c8" {
# Equals to character_varying(256).
type = text
}
}
Other Types
The hllsketch
, super
, geometry
and geography
types are supported by Atlas.
table "t" {
schema = schema.test
column "c1" {
type = hllsketch
}
column "c2" {
type = super
}
column "c3" {
type = geometry
}
column "c4" {
type = geography
}
}