Skip to main content

HCL Column Types

The following guide describes the column types supported by Atlas HCL, and how to use them.

MySQL

Bit

The bit type allows creating BIT columns. An optional size attribute allows controlling the number of bits stored in a column, ranging from 1 to 64.

table "t" {
schema = schema.test
column "c1" {
type = bit
}
column "c2" {
type = bit(4)
}
}

Binary

The varbinary and binary types allow storing binary byte strings.

table "t" {
schema = schema.test
column "c1" {
// Equals to binary(1).
type = binary
}
column "c2" {
type = binary(10)
}
column "c3" {
type = varbinary(255)
}
}

Blob

The tinyblob, mediumblob, blob and longblob types allow storing binary large objects.

table "t" {
schema = schema.test
column "c1" {
type = tinyblob
}
column "c2" {
type = mediumblob
}
column "c3" {
type = blob
}
column "c4" {
type = longblob
}
}

Boolean

The bool and boolean types are mapped to tinyint(1) in MySQL. Still, Atlas allows maintaining columns of type bool in the schema for simplicity reasons.

table "t" {
schema = schema.test
column "c1" {
type = bool
}
column "c2" {
type = boolean
}
}

Learn more about the motivation for these types in the MySQL website.

Date and Time

Atlas supports the standard MySQL types for storing date and time values: time, timestamp, date, datetime, and year.

table "t" {
schema = schema.test
column "c1" {
type = time
}
column "c2" {
type = timestamp
}
column "c3" {
type = date
}
column "c4" {
type = datetime
}
column "c5" {
type = year
}
column "c6" {
type = time(1)
}
column "c7" {
type = timestamp(2)
}
column "c8" {
type = datetime(4)
}
}

Fixed Point (Decimal)

The decimal and numeric types are supported for storing exact numeric values. Note that in MySQL the two types are identical.

table "t" {
schema = schema.test
column "c1" {
// Equals to decimal(10) as the
// default precision is 10.
type = decimal
}
column "c2" {
// Equals to decimal(5,0).
type = decimal(5)
}
column "c3" {
type = decimal(5,2)
}
column "c4" {
type = numeric
unsigned = true
}
}

Floating Point (Float)

The float and double types are supported for storing approximate numeric values.

table "t" {
schema = schema.test
column "c1" {
type = float
}
column "c2" {
type = double
}
column "c3" {
type = float
unsigned = true
}
column "c4" {
type = double
unsigned = true
}
}

Enum

The enum type allows storing a set of enumerated values.

table "t" {
schema = schema.test
column "c1" {
type = enum("a", "b")
}
column "c2" {
type = enum(
"c",
"d",
)
}
}

Integer

The tinyint, smallint, int, mediumint, bigint integer types are support by Atlas.

table "t" {
schema = schema.test
column "c1" {
type = int
}
column "c2" {
type = tinyint
}
column "c3" {
type = smallint
}
column "c4" {
type = mediumint
}
column "c5" {
type = bigint
}
}

Integer Attributes

The auto_increment, and unsigned attributes are also supported by integer types.

table "t" {
schema = schema.test
column "c1" {
type = tinyint
unsigned = true
}
column "c2" {
type = smallint
auto_increment = true
}
primary_key {
columns = [column.c2]
}
}

JSON

The json type allows storing JSON objects.

table "t" {
schema = schema.test
column "c1" {
type = json
}
}

Set

The set type allows storing a set of values.

table "t" {
schema = schema.test
column "c1" {
type = set("a", "b")
}
column "c2" {
type = set(
"c",
"d",
)
}
}

String

Atlas supports the standard MySQL types for storing string values. varchar, char, tinytext, mediumtext, text and longtext.

table "t" {
schema = schema.test
column "c1" {
type = varchar(255)
}
column "c2" {
type = char(1)
}
column "c3" {
type = tinytext
}
column "c4" {
type = mediumtext
}
column "c5" {
type = text
}
column "c6" {
type = longtext
}
}

Spatial

The geometry, point, multipoint, linestring and the rest of the MySQL spatial types are supported by Atlas.

table "t" {
schema = schema.test
column "c1" {
type = geometry
}
column "c2" {
type = point
}
column "c3" {
type = multipoint
}
column "c4" {
type = linestring
}
}

PostgreSQL

Array

Atlas supports defining PostgreSQL array types using the sql function.

table "t" {
schema = schema.test
column "c1" {
type = sql("int[]")
}
column "c2" {
type = sql("text[]")
}
column "c3" {
type = sql("int ARRAY")
}
column "c4" {
type = sql("varchar(255)[]")
}
column "c5" {
// The current PostgreSQL implementation
// ignores any supplied array size limits.
type = sql("point[4][4]")
}
}

Bit

The bit and bit varying types allow creating bit string columns.

table "t" {
schema = schema.test
column "c1" {
// Equals to bit(1).
type = bit
}
column "c2" {
type = bit(2)
}
column "c3" {
// Unlimited length.
type = bit_varying
}
column "c4" {
type = bit_varying(1)
}
}

Boolean

The boolean type allows creating standard SQL boolean columns.

table "t" {
schema = schema.test
column "c1" {
type = boolean
}
column "c2" {
type = boolean
default = true
}
}

Binary

The bytea type allows creating binary string columns.

table "t" {
schema = schema.test
column "c1" {
type = bytea
}
}

Date, Time and Interval

Atlas supports the standard PostgreSQL types for creating date, time and interval columns.

table "t" {
schema = schema.test
column "c1" {
type = date
}
column "c2" {
// Equals to "time without time zone".
type = time
}
column "c3" {
// Equals to "time with time zone".
type = timetz
}
column "c4" {
// Equals "timestamp without time zone".
type = timestamp
}
column "c5" {
// Equals "timestamp with time zone".
type = timestamptz
}
column "c6" {
type = timestamp(4)
}
column "c7" {
type = interval
}
}

Domain

The domain type is a user-defined data type that is based on an existing data type but with optional constraints and default values. Learn more about it in the PostgreSQL website.

domain "us_postal_code" {
schema = schema.public
type = text
null = true
check "us_postal_code_check" {
expr = "((VALUE ~ '^\\d{5}$'::text) OR (VALUE ~ '^\\d{5}-\\d{4}$'::text))"
}
}

domain "username" {
schema = schema.public
type = text
null = false
default = "anonymous"
check "username_length" {
expr = "(length(VALUE) > 3)"
}
}

table "users" {
schema = schema.public
column "name" {
type = domain.username
}
column "zip" {
type = domain.us_postal_code
}
}

Enum

The enum type allows storing a set of enumerated values. Learn more about it in the PostgreSQL website.

enum "status" {
schema = schema.test
values = ["on", "off"]
}

table "t1" {
schema = schema.test
column "c1" {
type = enum.status
}
}

table "t2" {
schema = schema.test
column "c1" {
type = enum.status
}
}

Fixed Point (Decimal)

The decimal and numeric types are supported for storing exact numeric values. Note that in PostgreSQL the two types are identical.

table "t" {
schema = schema.test
column "c1" {
// Equals to decimal.
type = numeric
}
column "c2" {
// Equals to decimal(5).
type = numeric(5)
}
column "c3" {
// Equals to decimal(5,2).
type = numeric(5,2)
}
}

Floating Point (Float)

The real and double_precision types are supported for storing approximate numeric values.

table "t" {
schema = schema.test
column "c1" {
type = real
}
column "c2" {
type = double_precision
}
column "c3" {
// Equals to real when precision is between 1 to 24.
type = float(10)
}
column "c2" {
// Equals to double_precision when precision is between 1 to 24.
type = float(30)
}
}

Geometric

Atlas supports the standard PostgreSQL types for creating geometric columns.

table "t" {
schema = schema.test
column "c1" {
type = circle
}
column "c2" {
type = line
}
column "c3" {
type = lseg
}
column "c4" {
type = box
}
column "c5" {
type = path
}
column "c6" {
type = polygon
}
column "c7" {
type = point
}
}

Integer

The smallint, integer / int, bigint types allow creating integer types.

table "t" {
schema = schema.test
column "c1" {
type = smallint
}
column "c2" {
type = integer
}
column "c3" {
type = int
}
column "c4" {
type = bigint
default = 1
}
}

JSON

The json and jsonb types allow creating columns for storing JSON objects.

table "t" {
schema = schema.test
column "c1" {
type = json
}
column "c2" {
type = jsonb
}
}

Money

The money data type allows creating columns for storing currency amount with a fixed fractional precision.

table "t" {
schema = schema.test
column "c1" {
type = money
}
}

Network Address

The inet, cidr, macaddr and macaddr8 types allow creating network address columns.

table "t" {
schema = schema.test
column "c1" {
type = inet
}
column "c2" {
type = cidr
}
column "c3" {
type = macaddr
}
column "c4" {
type = macaddr8
}
}

Range

PostgreSQL supports the creation of range types for storing range of values of some element type. Learn more about them in the PostgreSQL website.

table "t" {
schema = schema.test
column "r1" {
type = int4range
}
column "r2" {
type = int8range
}
column "r3" {
type = numrange
}
column "r4" {
type = tsrange
}
column "r5" {
type = tstzrange
}
column "r6" {
type = daterange
}
column "r7" {
type = int4multirange
}
column "r8" {
type = int8multirange
}
column "r9" {
type = nummultirange
}
column "r10" {
type = tsmultirange
}
column "r11" {
type = tstzmultirange
}
column "r12" {
type = datemultirange
}
}

Serial

PostgreSQL supports creating columns of types smallserial, serial, and bigserial. Note that these types are not actual types, but more like "macros" for creating non-nullable integer columns with sequences attached.

table "t" {
schema = schema.test
column "c1" {
type = smallserial
}
column "c2" {
type = serial
}
column "c3" {
type = bigserial
}
}

String

The varchar, char, character_varying, character and text types allow creating string columns.

table "t" {
schema = schema.test
column "c1" {
// Unlimited length.
type = varchar
}
column "c2" {
// Alias to character_varying(255).
type = varchar(255)
}
column "c3" {
// Equals to char(1).
type = char
}
column "c4" {
// Alias to character(5).
type = char(5)
}
column "c5" {
type = text
}
}

The tsvector and tsquery data types are designed to store and query full text search. Learn more about them in the PostgreSQL website.

table "t" {
schema = schema.test
column "tsv" {
type = tsvector
}
column "tsq" {
type = tsquery
}
}

UUID

The uuid data type allows creating columns for storing Universally Unique Identifiers (UUID).

table "t" {
schema = schema.test
column "c1" {
type = uuid
}
column "c2" {
type = uuid
default = sql("gen_random_uuid()")
}
}

XML

The xml data type allows creating columns for storing XML data.

table "t" {
schema = schema.test
column "c1" {
type = xml
}
}

SQLite

Values in SQLite are stored in one of the four native types: BLOB, INTEGER, NULL, TEXT and REAL. Still, Atlas supports variety of data types that are commonly used by ORMs. These types are mapped to column affinities based on the rules described in SQLite website.

Blob

The blob data type allows creating columns with BLOB type affinity.

table "t" {
schema = schema.main
column "c" {
type = blob
}
}

Integer

The int and integer data types allow creating columns with INTEGER type affinity.

table "t" {
schema = schema.main
column "c" {
type = int
}
}

Numeric

The numeric and decimal data types allow creating columns with NUMERIC type affinity.

table "t" {
schema = schema.main
column "c" {
type = decimal
}
}

Text

The text, varchar, clob, character and varying_character data types allow creating columns with text type affinity. i.e. stored as text strings.

table "t" {
schema = schema.main
column "c" {
type = text
}
}

Real

The real, double, double_precision, and float data types allow creating columns with real type affinity.

table "t" {
schema = schema.main
column "c" {
type = real
}
}

Additional Types

As mentioned above, Atlas supports variety of data types that are commonly used by ORMs. e.g. Ent.

table "t" {
schema = schema.main
column "c1" {
type = bool
}
column "c2" {
type = date
}
column "c3" {
type = datetime
}
column "c4" {
type = uuid
}
column "c5" {
type = json
}
}

SQL Server

Bit

The bit type allows creating BIT columns.

table "t" {
schema = schema.dbo
column "c1" {
type = bit
}
}

Binary strings

The varbinary and binary types allow storing binary byte strings.

table "t" {
schema = schema.dbo
column "c1" {
// Equals to binary(1).
type = binary
}
column "c2" {
type = binary(10)
}
column "c3" {
type = varbinary(255)
}
column "c4" {
// Max length: 8,000 bytes.
type = varbinary(MAX)
}
}

Date and Time

Atlas supports the standard SQL Server types for storing date and time values: date, datetime, datetime2, datetimeoffset, smalldatetime and time. The document on Microsoft website has more information on date and time types.

table "t" {
schema = schema.dbo
column "c1" {
type = date
}
column "c2" {
type = datetime
}
column "c3" {
type = datetime2
}
column "c4" {
type = datetimeoffset
}
column "c5" {
type = smalldatetime
}
column "c6" {
// Equals to time(7).
type = time
}
column "c7" {
type = time(1)
}
column "c8" {
type = time(2)
}
column "c9" {
type = time(3)
}
column "c10" {
type = time(4)
}
column "c11" {
type = time(5)
}
column "c12" {
type = time(6)
}
}

Integer

The int, bigint, smallint, and tinyint integer types are support by Atlas. See document on Microsoft website for more information on integer types.

table "t" {
schema = schema.dbo
column "c1" {
type = int
}
column "c2" {
type = tinyint
}
column "c3" {
type = smallint
}
column "c4" {
type = bigint
}
}

Integer Blocks

The identity block can be used to create an identity column.

table "t" {
schema = schema.dbo
column "c1" {
type = tinyint
}
column "c2" {
type = bigint
identity {
seed = 701
increment = 1000
}
}
primary_key {
columns = [column.c2]
}
}

Fixed Point (Decimal)

The decimal and numeric types are supported for storing exact numeric values. Note that in SQL Server the two types are identical.

table "t" {
schema = schema.dbo
column "c1" {
// Equals to decimal(18, 0) as the
// default precision is 18.
type = decimal
}
column "c2" {
// Equals to decimal(5,0).
type = decimal(5)
}
column "c3" {
type = decimal(5,2)
}
column "c4" {
type = numeric
}
}

Floating Point (Float)

The float and real types are supported for storing approximate numeric values. The document on Microsoft website has more information on float types.

table "t" {
schema = schema.dbo
column "c1" {
// Equals to float(53).
type = float
}
column "c2" {
// float(n) is between 1 and 53.
type = float(12)
}
column "c3" {
// The ISO synonym for real is `float(24)`.
type = real
}
}

Money

The money and smallmoney data types allows creating columns for storing currency amount with a fixed fractional precision.

table "t" {
schema = schema.dbo
column "c1" {
type = money
}
column "c2" {
type = smallmoney
}
}

Character strings

The char, and varchar types allow creating string columns. The document on Microsoft website has more information on string types.

table "t" {
schema = schema.dbo
column "c1" {
// Equals to varchar(1).
type = varchar
}
column "c2" {
type = varchar(255)
}
column "c3" {
type = varchar(MAX)
}
column "c4" {
// Equals to char(1).
type = char
}
column "c5" {
type = char(5)
}
}

Unicode character strings

The nchar, and nvarchar types allow creating string columns. The document on Microsoft website has more information on unicode string types.

table "t" {
schema = schema.dbo
column "c1" {
// Equals to nvarchar(1).
type = nvarchar
}
column "c2" {
type = nvarchar(255)
}
column "c3" {
type = nvarchar(MAX)
}
column "c4" {
// Equals to nchar(1).
type = nchar
}
column "c5" {
type = nchar(5)
}
}

ntext, text and image

Atlas supports some deprecated types for backward compatibility. The document on Microsoft website has more information on ntext, text and image types.

table "t" {
schema = schema.dbo
column "c1" {
type = ntext
}
column "c2" {
type = text
}
column "c3" {
type = image
}
}

User-defined types

There are two types of user-defined types are supported by Atlas: Alias Types and Table Types.

The CLR user-defined types are not supported by Atlas.

Alias Types

The type_alias type allows creating columns with user-defined types.

type_alias "ssn" {
schema = schema.dbo
type = varchar(11)
null = false
}
type_alias "age" {
schema = schema.dbo
type = smallint
null = false
}
table "t" {
schema = schema.dbo
column "ssn" {
type = type_alias.ssn
}
column "age" {
type = type_alias.age
}
}

Table Types

The type_table type allows the creation of columns with user-defined table types. The User-Defined table type only allows to use of functions/procedures arguments and not on table columns.

type_table "address" {
schema = schema.dbo
column "ssn" {
type = type_alias.ssn
}
column "street" {
type = varchar(255)
}
column "city" {
type = varchar(255)
}
column "state" {
type = varchar(2)
}
column "zip" {
type = type_alias.zip
}
index {
unique = true
columns = [column.ssn]
}
check "zip_check" {
expr = "len(zip) = 5"
}
}
function "fn1" {
schema = schema.dbo
lang = SQL
arg "@a1" {
type = type_table.address
readonly = true // The table type is readonly argument.
}
arg "@zip" {
type = type_alias.zip
}
return = int
as = <<-SQL
BEGIN
RETURN (SELECT COUNT(1) FROM @a1 WHERE zip = @zip);
END
SQL
}
type_alias "ssn" {
schema = schema.foo
type = varchar(11)
null = false
}
type_alias "zip" {
schema = schema.foo
type = varchar(5)
null = false
}
note

SQL Server doesn't support creating a named unique constraint on a user-defined table type. Atlas was unable to handle duplicate unique constraints (the unique constraints on the same columns) on table types. The below example will cause schema diff for every time it applies schema.

CREATE TYPE [typ1] AS TABLE (
[c1] int NOT NULL UNIQUE ([c1] DESC),
UNIQUE ([c1] ASC)
);

ClickHouse

Array

Atlas supports defining ClickHouse array types using the sql function.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
type = sql("Array(Int32)")
}
column "c2" {
type = sql("Array(String)")
}
column "c3" {
type = sql("Array(Array(Int32))")
}
}

Boolean

The Bool type allows creating standard SQL boolean columns.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
type = Bool
}
column "c2" {
type = Bool
default = true
}
}

Date and Time

Atlas supports the standard ClickHouse types for creating date and time columns: Date, DateTime, DateTime32 DateTime64.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Date
}
column "c2" {
null = false
type = Date32
}
column "c3" {
null = false
type = DateTime
}
column "c4" {
null = false
type = DateTime("America/New_York")
}
column "c5" {
null = false
type = DateTime
}
column "c6" {
null = false
type = DateTime32("America/New_York")
}
column "c7" {
null = false
type = DateTime64(3)
}
column "c8" {
null = false
type = DateTime64(3, "America/New_York")
}
}

Fixed Point (Decimal)

The Decimal type allows creating columns for storing exact numeric values. The precision and scale are specified as below.

  • Decimal Precision: 9, Scale: 0
  • Decimal32(Scale) Precision: 9, Scale: Scale
  • Decimal64(Scale) Precision: 18, Scale: Scale
  • Decimal128(Scale) Precision: 38, Scale: Scale
  • Decimal256(Scale) Precision: 76, Scale: Scale
  • Decimal(Precision, Scale) Precision: Precision, Scale: Scale
table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Decimal
}
column "c2" {
null = false
type = Decimal32(2)
}
column "c3" {
null = false
type = Decimal64(2)
}
column "c4" {
null = false
type = Decimal128(2)
}
column "c5" {
null = false
type = Decimal256(2)
}
column "c6" {
null = false
type = Decimal(11, 2)
}
}

Enum

The Enum type allows storing a set of enumerated values and supports defining ClickHouse enum types using the sql function.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Enum("a", "b")
}
column "c2" {
null = false
type = Enum8("a", "b")
}
column "c3" {
null = false
type = Enum16("a", "b")
}
}

Fixed String

The FixedString type allows creating columns for storing fixed-length string values.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = FixedString(10)
}
}

Floating Point (Float)

The Float32 and Float64 types are supported for storing approximate numeric values. The aliases for these types are Float and Double.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Float
}
column "c2" {
null = false
type = Double
}
}

Integer

The Int8, Int16, Int32, Int64, Int128, Int256 types allow creating integer types. The aliases for these types are Tinyint, Smallint, Int, Bigint.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Tinyint
}
column "c2" {
null = false
type = Smallint
}
column "c3" {
null = false
type = Int
}
column "c4" {
null = false
type = Bigint
}
column "c5" {
null = false
type = Int128
}
column "c6" {
null = false
type = Int256
}
}

Integer Attributes

The Unsigned attribute is also supported by integer types.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Int
unsigned = true
}
}

IPv4 and IPv6

The IPv4 and IPv6 types allow creating columns for storing IPv4 and IPv6 addresses.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = IPv4
}
column "c2" {
null = false
type = IPv6
}
}

Spatial

Atlas supports the standard ClickHouse types for creating spatial columns.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Point
}
column "c2" {
null = false
type = Polygon
}
column "c3" {
null = false
type = MultiPolygon
}
}

Ring

The Ring type allows creating columns for storing ring values.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = Ring
}
}

String

The String type allows creating columns for storing string values.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = String
}
}

UUID

The UUID type allows creating columns for storing Universally Unique Identifiers (UUID).

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = UUID
}
}

Tuple

Atlas supports defining ClickHouse tuple types using the sql function.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("Tuple(Int32, String)")
}
}

LowCardinality

Atlas supports defining ClickHouse low cardinality types using the sql function.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("LowCardinality(String)")
}
}

Nullable

Atlas supports defining ClickHouse nullable types using the sql function. Null attribute is needed to be set to true for nullable types.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = true
type = sql("Nullable(String)")
}
}

JSON

The JSON type allows creating columns for storing JSON objects.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
type = JSON
}
}

AggregateFunction

Atlas supports defining ClickHouse aggregate data types by using the sql function.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("AggregateFunction(uniq, UInt64)")
}
column "c2" {
null = false
type = sql("SimpleAggregateFunction(sum, Int32)")
}
}
info

The AggregateFunction and SimpleAggregateFunction are complex data types. Therefore, we recommend using a Dev Database to normalize these types.

Nested

Atlas supports defining ClickHouse nested data types by using the sql function.

table "t" {
schema = schema.test
engine = Memory
column "c1" {
null = false
type = sql("Nested(a Int32, b String)")
}
}
info

The Nested is a complex data type. Therefore, we recommend using a Dev Database to normalize these types.

Redshift

Boolean

The boolean and bool types allow creating standard SQL boolean columns.

table "t" {
schema = schema.test
column "c1" {
type = boolean
}
column "c2" {
# Alias to boolean.
type = bool
}
}

Binary

The binary_varying, varbinary and varbyte types allow creating binary string columns.

table "t" {
schema = schema.test
column "c1" {
type = binary_varying(255)
}
column "c2" {
# Alias to binary_varying
type = varbinary(255)
}
column "c3" {
# Alias to binary_varying
type = varbyte(255)
}
}

Date, Time and Interval

Atlas supports the standard Redshift types for creating date, time and interval columns.

table "t" {
schema = schema.test
column "c1" {
type = date
}
column "c2" {
# Equals to "time without time zone".
type = time
}
column "c3" {
# Equals to "time with time zone".
type = timetz
}
column "c4" {
# Equals "timestamp without time zone".
type = timestamp
}
column "c5" {
# Equals "timestamp with time zone".
type = timestamptz
}
column "c6" {
type = sql("interval year to month")
}
}

Fixed Point (Decimal)

The decimal and numeric types are supported for storing exact numeric values. Note that in Redshift the two types are identical.

table "t" {
schema = schema.test
column "c1" {
# Equals to numeric.
type = decimal
}
column "c2" {
# Equals to numeric(5).
type = decimal(5)
}
column "c3" {
# Equals to numeric(5,2).
type = decimal(5,2)
}
}

Floating Point (Float)

The real and double_precision types are supported for storing approximate numeric values.

table "t" {
schema = schema.test
column "c1" {
type = real
}
column "c2" {
type = double_precision
}
column "c3" {
type = float(10)
}
column "c4" {
type = float(30)
}
column "c5" {
# Alias to real.
type = float4
}
column "c6" {
# Alias to double_precision.
type = float8
}
}

Integer

The smallint, integer / int, bigint types allow creating integer types.

table "t" {
schema = schema.test
column "c1" {
type = smallint
}
column "c2" {
type = integer
}
column "c3" {
type = int
}
column "c4" {
type = bigint
}
column "c5" {
# Alias to smallint.
type = int2
}
column "c6" {
# Alias to integer.
type = int4
}
column "c7" {
# Alias to bigint.
type = int8
}
}

String

The varchar, nvarchar, char, nchar, bpchar, character_varying, character and text types allow creating string columns.

table "t" {
schema = schema.test
column "c1" {
# Equals character_varying(256).
type = varchar
}
column "c2" {
# Alias to character_varying(255).
type = varchar(255)
}
column "c3" {
# Equals to character_varying(255).
type = nvarchar(255)
}
column "c4" {
# Equals to char(1).
type = char
}
column "c5" {
# Equals to char(5).
type = nchar(5)
}
column "c6" {
# Alias to character(5).
type = char(5)
}
column "c7" {
# Alias to character(5).
type = bpchar(5)
}
column "c8" {
# Equals to character_varying(256).
type = text
}
}

Other Types

The hllsketch, super, geometry and geography types are supported by Atlas.

table "t" {
schema = schema.test
column "c1" {
type = hllsketch
}
column "c2" {
type = super
}
column "c3" {
type = geometry
}
column "c4" {
type = geography
}
}