Skip to main content

3 posts tagged with "ci/cd"

View All Tags

Atlas is now SOC2 Certified for 2024

· 3 min read
Rotem Tamir
Building Atlas

Today we are happy to announce that Atlas has achieved SOC2 compliance for the third year in a row. This is an important milestone for us, demonstrating our commitment to providing a solid infrastructure for our users and customers.

soc2-atlas-ariga-compliance

As a company that is trusted by its customers to handle mission-critical databases, we are committed to ensuring the highest standards of security, availability, and confidentiality. Achieving SOC 2 compliance demonstrates our dedication to safeguarding customer data, maintaining trust, and adhering to industry best practices.

Our commitment to process only metadata

commitment to not process records from your database

Control 70. Our commitment to not process records from your database. Screenshot from Ariga's full SOC2 audit report.

As anyone in the compliance domain knows, audits are about setting a high bar and then building controls to ensure they are met throughout our day-to-day operations. While these audits often address external requirements, such as regulatory mandates, they also serve as an opportunity to build trust with customers by addressing critical areas of concern within the company.

This year, we chose to use our audit process to address a common question from customers regarding how we handle their data. As a schema management tool, Atlas interacts with critical and sensitive data assets of our customers. This naturally raises concerns for compliance and security teams, as they are entrusted with protecting data on behalf of their own customers.

Atlas, and Atlas Cloud, our SaaS offering, are designed with a foundational principle: we do not store, send, or process user data—only metadata. We have consistently communicated this commitment to compliance teams, and after thorough discussions and reviews, they have been satisfied with this approach. However, this year we decided to formalize this commitment within our compliance framework.

As part of our SOC 2 audit, we introduced Control #70 which states: "The company does not process or store records from the customer's managed databases, but only handles information schema and metadata related to them."

By incorporating this control, we have established a clear, auditable process that reinforces our promise to our customers and ensures that this principle remains at the core of how we operate moving forward.

To summarize, achieving SOC 2 compliance for the third year reflects our core belief as engineers: security, privacy, and automation should drive auditable processes. SOC 2 provides the framework to solidify these principles into a trusted, transparent process for our customers.

If your compliance team, needs access to our report or other documents, drop us a line!

Case Study: How Unico's Platform Engineering Team Closed the DevOps/Databases Gap Using Atlas

· 6 min read
Rotem Tamir
Building Atlas

"Month over month, we see smaller and smaller incidents.", Luiz Casali, Sr Engineering Manager

Company Background

Unico is a leading digital identity technology provider in Brazil, developing secure and efficient digital identity solutions for businesses and individuals. Their platform helps organizations streamline identity verification processes, delivering a seamless user experience while enhancing security and reducing fraud.

The Missing Layer: Tackling Complexity, Outages, and Risks in Database Schema Management

At Unico, the Platform Engineering team, led by Luiz Casali, is focused on improving developer productivity. "Reducing complexity for developers is one of our top priorities," Luiz explained.

Unico's Platform team had previously built solutions to automate CI/CD workflows for code using Bazel and GitHub Actions and for infrastructure using Terraform and Atlantis. The team was missing a standardized solution for managing database schema changes.

cicd-database-gap

This gap introduced several pressing issues:

  1. Risky Manual Processes: Database schema changes (migrations) were performed manually, increasing the chance of human error.
  2. Unreliable Deployments: Unplanned, database-related outages were common, emphasizing the need for a safer way to handle database changes.
  3. Compliance Requirements: The team needed to document and review schema changes to maintain governance standards, but the lack of automation made this challenging.

Determined to bridge this gap and establish a safer, more efficient solution for developers, Unico's Platform Engineering team began researching the best database migration tools. Thiago da Silva Conceição, a Site Reliability Engineer (SRE) in the team, took the lead on this technical evaluation.

The Challenge of Managing Database Schema Migrations

Traditional schema migration tools posed significant challenges for Unico. As Thiago noted, "Automation with our previous tool was never easy to maintain. It followed a specific pattern, and only a few team members were familiar with it." The team faced limitations that affected usability, integration, and overall productivity:

  • Limited Usability and Adoption: The tool required extensive knowledge, and documentation was limited, making it difficult to adopt across the team.
  • Lack of Automation Support: Automated migrations and reliable error-handling were lacking, leading to inconsistent deployments and a need for additional manual oversight.
  • Compliance Difficulties: The absence of automated documentation and governance features made it challenging to maintain and provide records for audit and compliance requirements.

With these challenges in mind, Unico needed a solution that could offer usability, integration with existing tools, and comprehensive metrics to continuously monitor and improve database migrations.

Evaluating Alternatives and Choosing Atlas

"In the end, choosing Atlas was easy. It is a simple, yet powerful tool, offering a significant impact with many ready-made features that would require customization in other tools."
Thiago Silva Conceição, SRE, Unico

During the search for a new solution, Unico's engineering team prioritized several criteria:

  1. Ease of Use: The tool needed to be straightforward and accessible for all developers, not just a few specialized team members.
  2. Integration and Compatibility: It had to fit naturally with Unico's technology stack, particularly with Terraform, which was already in heavy use.
  3. Metrics and Alerts: Real-time insights and alerts were essential to monitor migrations effectively.

Thiago compared a few traditional solutions before selecting Atlas. Atlas's declarative schema-as-code approach, along with its HCL compatibility and robust cloud management, aligned well with Unico's needs. It allowed the team to automate migrations, eliminate manual errors, and centralize schema management, creating a unified experience across their projects. "Atlas allowed us to keep the DDL in HCL while still supporting SQL scripts for specific use cases through its versioning model," Thiago shared.

One Migration Tool to Rule Them All

schema-migration-tool

Another key priority for Unico's Platform Engineering team was standardization. With multiple teams working across diverse programming languages and databases, The Platform Engineering team needed a unified migration tool that would work for a wide array of use cases, without sacrificing ease of use or reliability. To simplify the developer experience and streamline internal operations, they aimed to find a single solution that could support all teams consistently and seamlessly.

Atlas emerged as the ideal fit by providing plugin support for various databases, ORMs and integrations, making it a flexible tool for Unico's entire tech stack. The ability to standardize migration management with Atlas allowed Unico's Platform Engineering team to enforce consistent practices across all projects. Atlas became the single source of truth for schema management, offering a centralized framework for building policies, integrating into CI/CD pipelines, and supporting developers.

By implementing Atlas as a standard, the Platform Engineering team eliminated the need to train on or maintain multiple tools, reducing complexity and operational overhead. Now, Unico's developers enjoy a unified experience, and the platform team has only one tool to integrate, support, and scale as the company grows.

Implementation: A Smooth Migration Process

The migration to Atlas was seamless, with no need to recreate migration files or impose rigid formats. "We simply imported the schemas from the production database, keeping the process straightforward and efficient," Thiago said. The team was able to quickly onboard Atlas and start seeing results, with pre-built actions in Atlas Cloud providing essential metrics, notifications, and dashboards for tracking progress.

This success reinforced the decision to adopt Atlas:

"Month over month, we see smaller and smaller incidents.

— Luiz Casali, Senior Engineering Manager

Outcome: Faster Development Cycles, Increased Reliability, and Enhanced Compliance

With Atlas in place, Unico's Platform Engineering team has achieved several key outcomes:

  • Accelerated Development Cycles: Automation of database migrations streamlined the development process, enabling faster iterations and more rapid deployments.
  • Increased Reliability: Atlas's linting and testing tools reduced migration errors and enhanced deployment stability, contributing to Unico's goal of reducing incidents.
  • Enhanced Compliance: Atlas's automated documentation ensures that each migration step is recorded, simplifying compliance by providing a clear, auditable record of all schema changes.

By automating these processes, the team has successfully reduced manual work and achieved a more predictable migration workflow. Now, as Unico grows, they are assured that their migration practices will scale smoothly, maintaining operational costs without sacrificing speed or reliability.

ci-cd-database-gap-close

Getting Started

Atlas brings the declarative mindset of infrastructure-as-code to database schema management, similar to Terraform, but focused on databases. Using its unique schema-as-code approach, teams can quickly inspect existing databases and get started with minimal setup.

Like Unico, we recommend anyone looking for a schema migration solution to get started with Atlas by trying it out on one or two small projects. Dive into the documentation, join our Discord community for support, and start managing your schemas as code with ease.

Why Your Team Needs a Database Schema-as-Code Tool

· 11 min read
Rotem Tamir
Building Atlas

The Evolution of Database Schema Management

In today's world, where software is developed and deployed at a rapid pace, selecting the right tools for your team is crucial. The right tools can help you move faster, be more productive, and reduce the risk of errors and bugs. Most backend applications are backed by a database, and maintaining the database schema is a critical part of the development process.

Our industry has seen many trends in the way database schemas evolve over the years. In the early days, DBAs would manually run SQL DDL commands directly against the database through a terminal. Then came GUI based, point-and-click database management tools that included schema editing capabilities.

In the early 2000s, we saw the rise of "database migration tools" that allowed developers to write versioned database upgrade scripts (usually in SQL), called "migrations", that would be executed by the tool itself. This trend was further intensified with the rise of DevOps and CI/CD, as it became the de-facto standard way for automating database schema management.

The Rise of Database Schema-as-Code

In recent years, we have witnessed a seismic shift in the way cloud infrastructure is managed. The rise of tools such as Terraform and Kubernetes has led to the concept of "Infrastructure-as-Code". As the complexity of infrastructure grew, it became clear that the only way to manage it effectively was to use a declarative approach and treat it "as code".

Infrastructure-as-code, in this context, means that the desired state of the infrastructure is defined in a formal language ("as code") and stored in a version control system (such as Git). The infrastructure is then managed by a tool that compares the desired state to the actual state and makes the necessary changes to bring the actual state to the desired state.

This approach has many advantages over the traditional imperative approach of manually running commands against the infrastructure. It allows for better collaboration between team members, it is more robust and less susceptible to errors, it is self documenting, and allows for better visibility, governance and control into the state of the infrastructure.

Following this trend, some projects such as Atlas and Skeema have started to apply the same principles to database schema management. Instead of using an imperative approach, where developers do the planning and tools are only used to execute the plan and keep track of what has been done, they bring to the table a simpler approach. This approach, which is gaining the name "Database Schema-as-Code", applies a declarative approach to database schema management: developers provide the desired state of the database and the tool automatically plans the required migrations.

A practical example

Let's use Atlas to show a quick example of how database schema-as-code tools work.

Atlas allows users to represent their database schema in plain SQL or in HCL. The schema is saved in a schema file, which holds the desired state of our database.

We will start with a simple schema that represents a users table, in which each user has an ID and a name:

schema.hcl
table "users" {
schema = schema.example
column "id" {
null = false
type = int
}
column "name" {
null = true
type = varchar(100)
}
primary_key {
columns = [column.id]
}
}

Now, let's apply this schema to an empty MySQL database:

atlas schema apply \
-u "mysql://root:pass@localhost:3306/example" \
--to file://schema.hcl \
--dev-url "docker://mysql/8/example"

Atlas will compare the desired state from our schema file to the database URL provided, and plan the migration:

-- Planned Changes:
-- Create "users" table
CREATE TABLE `users` (
`id` int NOT NULL,
`name` varchar(100) NULL,
PRIMARY KEY (`id`)
) CHARSET utf8mb4 COLLATE utf8mb4_0900_ai_ci;
? Are you sure?:
▸ Apply
Lint and edit
Abort

After applying this to our database, we will run the command once more and see that Atlas recognizes there is no drift between the two states:

Schema is synced, no changes to be made

Let's make a simple change to our schema by adding an email column:

schema.hcl
table "users" {
schema = schema.example
column "id" {
null = false
type = int
}
column "name" {
null = true
type = varchar(100)
}
column "email" {
null = true
type = varchar(255)
}
primary_key {
columns = [column.id]
}
}

Now let's run the schema apply command again, and view the migration plan that Atlas will create for us:

-- Planned Changes:
-- Modify "users" table
ALTER TABLE `users` ADD COLUMN `email` varchar(255) NULL;
? Are you sure?:
▸ Apply
Lint and edit
Abort

To conclude, in this example, we got a glimpse of how a tool like Atlas works with a database schema using the declarative approach.

Do you need a Database Schema-as-Code tool?

If you are using an older more traditional database migration tool or not using one at all, you might be wondering if you should consider switching to a Database Schema-as-Code tool. Here are five signs that you might need to consider it:

1. Your team is making changes to the database schema directly in production

The worst kind of tool for managing database schemas is no tool at all. Running migrations manually against production databases should be avoided at all costs. First, humans are notoriously prone to errors, and the risk of making a mistake that will cause downtime or data loss is very high. Second, any changes made directly in production are not tracked anywhere, so it is very hard to know what has been done and by whom. Third, it means that your deployments cannot be fully automated and you are missing out on the benefits of CI/CD.

Using a Database Schema-as-Code tool as the exclusive way of making changes to the database schema is a great way to avoid these problems. It allows you to automate your deployments, track all changes to the database schema in source control, and collaborate more effectively with your team.

2. You don't have a single source of truth for your database schema

Having a single source of truth for how your application is deployed is a key principle of DevOps. It allows you to have a clear picture of the state of your application at any given time, and it allows you to automate your deployments and avoid human errors.

By requiring all migrations to be checked in to source control, traditional migration tools can go a long way to ensure that the database schema is in a consistent state, but they suffer from two issues in this regard:

  1. They only keep track of the changes to the database ("migrations"). To figure out the actual schema of the database at any given version, you need to apply all the migrations up to that version to an empty database and inspect the result with an additional tool. Database Schema-as-Code tools, on the other hand, naturally document the schema of the database in any given version.

  2. They have no way to ensure that the actual database's schema is consistent with the migrations. If someone makes a change directly in the database, there is no way to know about it. When you apply your schema to a target database using a Database Schema-as-Code tool, it will compare the desired state to the actual state and make the necessary changes to bring the actual state to the desired state.

    This ensures that over time your actual databases will not drift from the desired state.

3. You don't have any database experts on your team

In the past, managing database schemas was under the responsibility of DBAs. They were the ones who were responsible for making sure that the database schema is consistent and that all changes are done safely.

In recent years, as cloud-native, microservices-based architectures have become more popular, the amount of databases that each team manages has grown significantly. This has led to a situation where many teams don't have a DBA , and the responsibility for managing the database schema falls on the shoulders of the developers.

If you maintain a small schema with a few tables, you might not feel the need for a tool to help you manage it. But as schemas grow in size and complexity, to contain thousands of database objects (tables, views, functions, stored procedures, etc.), it becomes very hard to manage them manually. A Database Schema-as-Code tool can help you manage your schema more effectively, even if you don't have any DBAs on your team.

4. You manually verify the safety of your database migrations

If your application is small and the stakes for making a mistake are low, you might be able to get away with messing up a schema change now and then. But if your workload is mission-critical, if application downtime or data loss can have a significant impact on your business, you need to make sure that your migrations are safe.

Many teams have been through the unpleasant experience of a failed migration that caused a significant outage. This is usually followed by a change in review processes where migrations are reviewed by multiple team members, and a manual verification process is added to make sure that the migration is safe to run.

This process is time-consuming and error-prone. Even worse, it turns team members with more database experience into bottlenecks, slowing down the development process and team velocity.

Database Schema-as-Code tools can help you automate this process and make it more robust. Atlas, for example, comes with built-in support for Migration Linting, Diff Policies, and other safety mechanisms that help you catch errors and issues before they lead to a full-blown production outage.

5. Your app and infra delivery are way better than your database deployments

When interviewing platform engineers about how their deployment infrastructure works, we keep hearing the same story: "Our deployments are 100% pure Infrastructure-as-Code GitOps goodness, we can do them 50 times a day!" And when we ask about databases… "Oh yeah, there’s that part... It’s not as great."

A lot has changed in the way applications are deployed since the early days of database migrations. The versioned migrations paradigm was a great improvement over the previous manual approach, but it is still very much an imperative approach. Modern application delivery principles such as GitOps and Infrastructure-as-Code work in a declarative way, and so they need a database schema management tool that works in a similar way.

If your application and infra delivery feel like a well-oiled machine, but your database deployments are still semi-manual, or feel clunky and error-prone, you should consider switching to a Database Schema-as-Code tool where you can manage your database schema in a Kubernetes Operator or a Terraform Provider.

Enter: Atlas

Atlas is a Database Schema-as-Code tool that allows you to manage your database schema in a declarative way. With Atlas, developers provide the desired state of the database schema and Atlas automatically plans the required migrations. To get started with Atlas, you can follow our quickstart guide..

Wrapping up

In this article, we have discussed the evolution of database schema management tools and the rise of Database Schema-as-Code tools. We have also discussed five signs that you might need to consider switching to a Database Schema-as-Code tool. I hope you found this article useful.

As always, we would love to hear your feedback and suggestions on the Atlas Discord server.